Strong and weak separability conditions for two-qubits density matrices

نویسنده

  • Yacob Ben-Aryeh
چکیده

Explicit separable density matrices, for mixed–two-qubits states, are derived by using Hilbert-Schmidt (HS) decompositions and Peres-Horodecki criterion. A “strongly separable” two-qubits mixed state is defined by multiplications of two density matrices, given with pure states, while “weakly separable” two-qubits mixed state is defined, by multiplications of two density matrices, which includes non-pure states. We find the sufficient and necessary condition for separability of two qubits density matrices and show that under this condition the two-qubits density matrices are strongly separable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-matrices provide a lower bound of concurrence

By focusing on the X-matrix part of a density matrix of two qubits we provide an algebraic lower bound for the concurrence. The lower bound is generalized for cases beyond two qubits and can serve as a sufficient condition for non-separability for bipartite density matrices of arbitrary dimension. Experimentally, our lower bound can be used to confirm non-separability without performing a compl...

متن کامل

Wigner Functions and Separability for Finite Systems

Abstract A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension pn where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the con...

متن کامل

Conditions for separability in generalized Laplacian matrices and nonnegative matrices as density matrices

Recently, Laplacian matrices of graphs are studied as density matrices in quantum mechanics. We continue this study and give conditions for separability of generalized Laplacian matrices of weighted graphs with unit trace. In particular, we show that the Peres-Horodecki positive partial transpose separability condition is necessary and sufficient for separability in C2 ⊗ C. In addition, we pres...

متن کامل

2 00 4 New considerations on the separability of very noisy mixed states and implications for NMR quantum computing

We revise the problem first addressed by Braunstein and co-workers (Phys. Rev. Lett. 83 (5) (1999) 1054) concerning the separability of very noisy mixed states represented by general density matrices with the form ρ ǫ = (1−ǫ)M d +ǫρ 1. From a detailed numerical analysis, it is shown that: (1) there exist infinite values in the interval taken for the density matrix expansion coefficients, −1 ≤ c...

متن کامل

Separability of Rank Two Quantum States

Explicit sufficient and necessary conditions for separability of higher dimensional quantum systems with rank two density matrices are given. A nonseparability inequality is also presented, for the case where one of the eigenvectors corresponding to nonzero eigenvalues is a maximally entangled state. PACS numbers: 03.65.Bz, 89.70.+c 1 SFB 256; SFB 237; BiBoS; CERFIM(Locarno); Acc. Arch.; USI(Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.08643  شماره 

صفحات  -

تاریخ انتشار 2015